Course Objective

This course has the following objectives:
1) provides students with an appreciation of the theories and methodologies of financial modeling.
2) trains students to apply finance theories to solve various problems in financial management, investments, portfolio management, and risk management.

This objective is achieved by teaching on how to design and implement financial models in the computer, with Excel as the main tool. It covers four classes of models: Corporate Finance models, Portfolio Models, Option-Pricing Models and Bond Models. It also covers simulation, some numerical methods, and VBA programming as well.

Motivation

With the increasing sophistication in financial models, and the advance in IT, finance professionals and researchers increasingly need to perform basic financial modeling and data processing using the computer on their own. Among the software used for such purposes, Microsoft Excel stands out as the default standard. Some finance professionals, for instance from investing banking, would go to the extent of recognizing Microsoft Excel as the single software that they would have to consistently use for the rest of their career. Therefore it is not only crucial to learn how to implement financial models in the computer, but especially using the advanced tools and VBA in Excel as well. This subject complements and enhances the other finance modules currently offered in the following ways:
1) concretizes the theoretical finance theories into implementable methods. This enhances the practical ability of the finance students.
2) prepares the students for financial modeling work, including model design, sourcing for data, model programming and debugging.
3) discusses the concept of efficiency and effectiveness when implementing financial models. This would be the only module that discusses such important perspective.

Learning Outcome

By the end of the course, students:
• learn of the four major classes of financial models and how to implement the models
• inherit a set of ready-to-go financial models which they can use in their professional or research work
• are able to design and put together financial models for analyzing and solving financial problems.
• are able to critique and improve on the efficiency and effectiveness of financial models.
Mode of Teaching

The course will be delivered as a series of 13 three-hour sessions in a computer lab. In each session, the student will go through each financial model hands-on with the computer as they are covered in class. Thus each computer needs to have
1) Microsoft Excel (the latest version), with the Solver add-on and Visual Basic for Applications add-on.
2) internet access
3) access to NUS library’s e-database (via the individual student’s log in)

Flipped Classroom

The course will be delivered using the flipped classroom methodology. In the flipped classroom methodology, students are to learn their “lectures” at home and do their “homework” in class. This is detailed in the following points:
1) Students shall watch the videos and learn the lesson before the class session.
2) Each student will take an individual closed-book quiz at the start of each class.
3) Students will do worksheets in groups. The worksheets will cover the material of that week.

Advantages
1) Students can understand the lecture at their own time and pace.
2) Students have closer coaching by the instructor during class.
3) Students are trained in doing group work.
4) Students learn to take responsibility for their own learning, and develop the skills for life long learning.

Pre-requisite

Reference Text

Assessment

This is a 100% CA course. The weight distribution for different components is as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Term</td>
<td>30</td>
</tr>
<tr>
<td>Final Quiz</td>
<td>30</td>
</tr>
<tr>
<td>Project</td>
<td>30</td>
</tr>
<tr>
<td>Class Participation</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Mid-Term Quiz

Date: Week of Feb 27 (In Class)
The mid-term quiz will be a 1.5 hour close-book practical test done in the computer lab. This quiz covers lessons 1 to 6. It will be held during class hours. Students are to make sure that they are available to sit for the mid-term.
Final Quiz

Date: Week of Apr 9 (In Class)
The final quiz will be a 1.5 hour close-book practical test done in the computer lab. This quiz covers lessons 7 to 12. It will be held during class hours. Students are to make sure that they are available to sit for the mid-term.

Other points to note

- **Attendance**: Since this is a 100% CA course, students must not miss more than 2 classes (not including absence due to medical (accompanied by medical certificates) or compassionate reasons). Violators will be heavily penalized or may even fail the entire module.
- **CA Attendance**: Students who miss any CA component will receive zero marks for that particular component. Absentees due to medical (accompanied by medical certificates) or compassionate reasons may be given a substitute form of assessment.
- Students are encouraged to always feedback to the instructor comments and suggestions that may help the class to learn better.
- Students are to check the IVLE weekly for announcements.
- Please use the forum in IVLE exclusively for students’ discussions
- Please use NUS e-mail for e-mail communications
Tentative Lesson Schedule:

<table>
<thead>
<tr>
<th>Wk</th>
<th>Week Starting</th>
<th>Learning Outcome</th>
<th>Online Coverage</th>
<th>F2F Activities</th>
<th>Assignment & Assessment</th>
<th>Chapters</th>
</tr>
</thead>
</table>
| 1 | Aug 12 | • Basic Excel Functions
 • VBA1 | • Excel Functions
 • Data Tables
 • Some Excel Hints
 • VBA: Output to Cells | • First VBA pgm
 • Exchange Rate Table
 • Solver
 • Regression
 • Using IF’s
 • Using Offset | Group Project 1 | VBA notes
 SB: Ch. 33, 30, 35 |
| 2 | Aug 19 | • Personal Finance
 • Corporate Financial Decisions
 • VBA2 | • Basic Time Value Models
 • The Financial Analysis of Leasing
 • The Financial Analysis of Leveraged Leases
 • Cash Flow Projection
 • VBA: For Next Loop 1 | • VBA: Single For Next Loop
 • Loan Table
 • Balloon Loans
 • Retirement Planning
 • CPF returns
 • Leasing Decision Model
 • Leveraged Leasing Model
 • HDB Rental Returns
 • Cash Flow Projection | Group Project 1 | SB: Ch 1, 6, 7 |
| 3 | Aug 26 | • Stock Valuation
 • VBA3 | • Financial Statement Modeling
 • WACC estimation
 • Stock Valuation
 • VBA: For Next Loop 2 | • VBA: Double For Next Loop
 • Circular Reference
 • Model: Cash as Plug
 • Model: Cash and Debt as Plug
 • Model: Constant Debt Ratio
 • Model: Constant Current Ratio
 • Valuing the Stock
 • Model: Operating Leverage
 • Model: Geographical Breakdown
 • Model: Discrete Recapitalization
 • Model: Discrete Fixed Asset Increment | Group Project 1 | SB: Ch. 3 |
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
<th>Group Project 2</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Sep 2</td>
<td>Matrices
Excel Array Functions
Portfolio Models using Solver
VBA4</td>
<td>Group Project 2</td>
<td>SB: Ch. 2, 31, 34, 8</td>
</tr>
<tr>
<td>5</td>
<td>Sep 9</td>
<td>Portfolio Models using Formulas
VBA5
Efficient Portfolios When There Are No Short-Sale Restrictions
Alternative Variance-Covariance Matrix
Efficient Portfolios without Short Sales
VBA: If Then Else 2</td>
<td>Group Project 2</td>
<td>SB: Ch. 8, 9, 10</td>
</tr>
<tr>
<td>6</td>
<td>Sep 16</td>
<td>Other Portfolio Models
VBA6
Black Litterman Model
VaR
VBA: Do While, Do Until Loops</td>
<td>Group Project 2</td>
<td>SB: Ch. 12</td>
</tr>
<tr>
<td></td>
<td>Sep 23</td>
<td>Recess Week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sep 30</td>
<td>Quiz 1
No online lessons
Practical Quiz 1 (1.5 hrs)
Information from the Web</td>
<td></td>
<td>SB: Ch. 41</td>
</tr>
<tr>
<td>8</td>
<td>Oct 7</td>
<td>VBA7
VBA: User-Defined
VBA: Select-Case</td>
<td></td>
<td>SB: Ch. 36,</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9 | Oct 14 | • Option Pricing Models: Black Scholes
 • Functions with VBA
 • VBA: Variable Types
 • VBA: Select Case Statement
 • Introduction to Options
 • The Black-Scholes Model
 • VBA: Function: Transaction cost
 • VBA: Function: stock price from Gordon Super Normal Growth Model
 • VBA: Variable Types
 • Implied Volatility
 • Structured Product 1: Principal Protection + Participation in the upside
 • Structured Product 2: the Up-Up and Away product
 • VBA: Function: Transaction cost
 • VBA: Function: stock price from Gordon Super Normal Growth Model
 • VBA: Variable Types
 • Implied Volatility
 • Structured Product 1: Principal Protection + Participation in the upside
 • Structured Product 2: the Up-Up and Away product
| | | Project 3 37, 13, 15 |
| 10 | Oct 21 | • Option Pricing Models: Simulation
 • VBA8
 • VBA: Arrays
 • Generating Random Numbers
 • Modeling the Stock Price and option valuation
 • VBA: Simulation
 • VBA: your first array
 • VBA: using array to compute income tax
 • VBA: using array to compute portfolio management
 • VBA: simulating dice rolls
 • VBA: producing random numbers
 • VBA: Modeling the stock price
| | | Group Project 3
| 11 | Oct 28 | • Option Pricing Models: Simulation
 • Option Pricing Models: Binomial
 • VBA10
 • Binomial Option-Pricing Model
 • VBA: Forms
 • VBA: Using Forms
 • Simulating investment returns
 • Binomial Option Pricing: Vanilla Options
 • Binomial Option Pricing: Structured Products
 • Law of Large Numbers
| | | Group Project 3
| 12 | Nov 4 | • Bond Modeling
 • Duration
 • Pricing a risky bond
| | | Group

SB: Ch. 39, 16, 19
Group Project 3
SB: Ch. 29, 18
Group Project 3
SB: Ch. 23, 22, 17
Group
SB: Ch. 25-
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Project</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 11</td>
<td>Immunization Strategies, Modeling the Term Structure, Calculating Default-Adjusted Expected Bond Returns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modeling the Yield Curve, Computing Par Yield, Computing Duration, Bond Immunization</td>
<td></td>
<td>Project 3</td>
</tr>
<tr>
<td></td>
<td>Practical Quiz 2 (1.5 hrs)</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>