DSC2008 Business Analytics—Data and Decisions

Lecturer : Assoc Prof Quek Ser Aik
Session : Semester I, 2013/2014

Aims & Objectives

“Most companies today have plenty of data. However, creating intelligence and gleaning real insights from this data is what continues to elude organizations.”—*Competing on Analytics: The New Science of Winning.*

Business decisions are often made under uncertainty. In the modern business environment, technological advances facilitate the collection of huge amounts of data which can potentially improve the decision-making process. Successful businesses make use of Business Analytics and Business Intelligence, which are fundamentally based on quantitative statistical methods and optimization procedures, to identify patterns and trends in their data which eventually lead to insightful projections and realistic predictions.

The sister module, DSC1007 Business Analytics—Models and Decisions (Business Analytics I), focuses on models and processes. This module is more concerned with data and tools, and introduces students to the fundamental concepts of statistical inference such as parameter estimation and hypothesis testing, as well as to statistical tools useful in business analytics, such as regression analysis and time series analysis. This continues the theme of delivering hands-on experience in modules focusing on analytics and operations.

This module was co-designed, and is co-taught, by the Department of Decision Sciences in the NUS Business School and the Department of Statistics and Applied Probability in the Faculty of Science, to draw upon the relevant expertise from the two departments.

The module provides all BBA students with a common statistical grounding for Business Analytics, upon which specialization may be built depending on each student’s chosen major. For the truly visionary student, a natural follow-on could be NUS MSc (Business Analytics), http://facebook.com/nusmsba. Biz undergrads can take some NUS MSc (BA) classes, e.g. BMA5002 is an extension of DSC2008, while BDC5101 is of DSC1007.

In keeping with the principles of Rigor and Relevance of Business Analytics I, students are expected to acquire the following knowledge and abilities.

Rigor

Building on the foundations of probability from Business Analytics – Models and Decisions, this module covers fundamental concepts underpinning the following business analytic tools:

1. Data summarization: pivot table;
2. Statistical inference: sampling distributions, confidence intervals and hypothesis testing;
3. Regression analysis: linear and multiple regression, regression diagnostics and model building;
4. Time series analysis: smoothing, regression-based models, ARIMA models and forecasting;

Emphasis will be made on how, what and why certain tools are useful and, and what their ramifications would be when used in practice.

Relevance
Module content makes use of examples that are based on current events and timely business topics. Adopting the Plan/Do/Report problem-solving approach, worked examples show students how to clearly define the business decision to be made and plan which method to use, do the business analysis with data-based numerical evidence and with the help of illuminating graphical displays, and finally report their findings and recommendations to the decision maker. This approach is reinforced using case-study projects involving real data in which students investigate a business-related question or make a business decision. This module also makes active use of the Excel spreadsheet and the SAS software.

Students will be equipped with the ability to “tell a story” and provide insights based on (big) data given to them (e.g. during their internships).

This module may probably be better for BBA(Accountancy) students than DSC1007 Business Analytics – Models & Decisions.

Prerequisites
For the time being: DSC1007 Business Analytics – Models & Decisions, or equivalent.

BIZ1000 Preparatory Mathematics (not prerequisite; just background materials):

We are in the process of removing all prerequisites for this module. In the interim, all interested students are invited to apply for waiver of the prerequisite DSC1007.

BBA (Accountancy) students are especially encouraged to take this module that might replace DSC1007 as a core module for future cohorts.

Module Outline
Describing data (Week 1-2)
 Data types
 Data statistics
 Description
 Sampling
 Data distributions
 Standard distributions
 Sampling distributions
 Confidence Interval
 Central Limit Theorem
Inferring from Data (Week 2-3)
 Testing hypothesis
 Comparing distributions
 Goodness-of-fit
 Homogeneity
 Comparing averages
 1 sample
 2 samples
 Multiple samples
 Analysis of Variance
 Relating variables
 Correlation

Predicting beyond Data (Week 4-6)
 Simple regression
 Multiple regression
 Variables selection
 Missing values
 Outliers
 Transformations
 Logistic regression

Time Series Analysis (Week 7-11)
 Multiple-regression-based time series models
 Smoothing methods
 Simple moving average
 Weighted moving average
 Single exponential smoothing
 Holt-Winters exponential smoothing
 Autoregressive Integrated Moving Average models

Cluster Analysis (Week 11-12)
 Distance measure
 Hierarchical cluster analysis
 K-means method